

Welcome to Pemi’s documentation!

Pemi is a framework for building testable ETL processes and workflows.

Motivation

There are too many ETL tools. So why do we need another one? Many
tools emphasize performance, or scalability, or building ETL jobs
“code free” using GUI tools. One of the features often
lacking is the ability to build
testable data integration solutions. ETL can be exceedingly
complex, and small changes to code can have large effects on output,
and potentially devastating effects on the cleanliness of your data
assets. Pemi was conceived with the goal of being able to build
highly complex ETL workflows while maintaining testability.

This project aims to be largely agnostic to the way data is
represented and manipulated. There is currently some support for
working with Pandas DataFrames [http://pandas.pydata.org/],
in-database transformations (via SqlAlchemy [https://www.sqlalchemy.org/])
and Apache Spark DataFrames [https://spark.apache.org]. Adding new data
representations is a matter of creating a new Pemi DataSubject class.

Pemi does not orchestrate the execution of ETL jobs (for that kind of
functionality, see Apache Airflow [https://airflow.apache.org] or
Luigi [https://github.com/spotify/luigi]). And as stated above, it
does not force a developer to work with data using specific representations.
Instead, the main role for Pemi fits in the space between manipulating
data and job orchestration.

Index

Getting Started

	Install Pemi

	Concepts and Features

	Tests

	Tutorial

	Roadmap

Reference

	pipe

	data_subject

	schema

	testing

Indices and tables

	Index

	Module Index

	Search Page

Install Pemi

Pemi can be installed from pip:

pip install pemi

Concepts and Features

Pipes

The principal abstraction in Pemi is the Pipe. A pipe can be composed
of Data Sources, Data Targets, and other Pipes. When
a pipe is executed, it collects data form the data sources, manipulates that data,
and loads the results into the data targets. For example, here’s a simple
“Hello World” pipe. It takes a list of names in the form of a Pandas DataFrame
and returns a Pandas DataFrame saying hello to each of them.

import pandas as pd

import pemi
from pemi.fields import *

class HelloNamePipe(pemi.Pipe):
 # Override the constructor to configure the pipe
 def __init__(self):
 # Make sure to call the parent constructor
 super().__init__()

 # Add a data source to our pipe - a pandas dataframe called 'input'
 self.source(
 pemi.PdDataSubject,
 name='input',
 schema = pemi.Schema(
 name=StringField()
)

)

 # Add a data target to our pipe - a pandas dataframe called 'output'
 self.target(
 pemi.PdDataSubject,
 name='output'
)

 # All pipes must define a 'flow' method that is called to execute the pipe
 def flow(self):
 self.targets['output'].df = self.sources['input'].df.copy()
 self.targets['output'].df['salutation'] = self.sources['input'].df['name'].apply(
 lambda v: 'Hello ' + v
)

To use the pipe, we have to create an instance of it:

pipe = HelloNamePipe()

and give some data to the source named “input”:

pipe.sources['input'].df = pd.DataFrame({
 'name': ['Buffy', 'Xander', 'Willow', 'Dawn']
})

	name

	Buffy

	Xander

	Willow

	Dawn

The pipe performs the data transformation when the flow method is called:

pipe.flow()

The data target named “output” is then populated:

pipe.targets['output'].df

	name

	salutation

	Buffy

	Hello Buffy

	Xander

	Hello Xander

	Willow

	Hello Willow

	Dawn

	Hello Dawn

Data Subjects

Data Sources and Data Targets are both types of Data
Subjects. A data subject is mostly just a reference to an object
that can be used to manipulate data. In the [Pipes](#pipes) example
above, we defined the data source called “input” as using the
pemi.PdDataSubject class. This means that this data subject refers
to a Pandas DataFrame object. Calling the df method on this data subject
simply returns the Pandas DataFrame, which can be manipulated in all the ways
that Pandas DataFrames can be manipulated.

Pemi supports 3 data subjects natively, but can easily be extended to support others. The
3 supported data subjects are

	pemi.PdDataSubject - Pandas DataFrames

	pemi.SaDataSubject - SQLAlchemy Engines

	pemi.SparkDataSubject - Apache Spark DataFrames

Schemas

A data subject can optionally be associated with a Schema.
Schemas can be used to validate that the data object of the data
subject conforms to the schema. This is useful when data is passed
from the target of one pipe to the source of another because it
ensures that downstream pipes get the data they are expecting.

For example, suppose we wanted to ensure that our data had fields called id and name.
We would define a data subject like:

from pemi.fields import *

ds = pemi.PdDataSubject(
 schema=pemi.Schema(
 id=IntegerField(),
 name=StringField()
)
)

If we provide the data subject with a dataframe that does not have a field:

df = pd.DataFrame({
 'name': ['Buffy', 'Xander', 'Willow']
})

ds.df = df

Then an error will be raised when the schema is validated (which happens automatically when
data is passed between pipes, as we’ll see below):

ds.validate_schema()
#=> MissingFieldsError: DataFrame missing expected fields: {'id'}

We’ll also see later that defining a data subject with a schema also
aids with writing tests. So while optional, defining data subjects
with an associated schema is highly recommended.

Referencing data subjects in pipes

Data subjects are rarely defined outside the scope of a pipe as done
in [Schemas](#schemas). Instead, they are usually defined in the
constructor of a pipe as in [Pipes](#pipes). Two methods of the
pemi.Pipe class are used to define data subjects: source and
target. These methods allow one to specify the data subject class
that the data subject will use, give it a name, assign a schema, and
pass on any other arguments to the specific data subject class.

For example, if we were to define a pipe that was meant to use an
Apache Spark dataframe as a source:

spark_session = ...
class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.source(
 pemi.SparkDataSubject,
 name='my_spark_source',
 schema=pemi.Schema(
 id=IntegerField(),
 name=StringField()
),
 spark=spark_session
)

When self.source is called, it builds the data subject from the options provided
and puts it in a dictionary that is associated with the pipe. The spark data frame
can then be accessed from within the flow method as:

def flow(self):
 self.sources['my_spark_source'].df

Types of Pipes

Most user pipes will typically inherit from the main pemi.Pipe class. However,
the topology of the pipe can classify it according to how it might be used. While
the following definitions can be bent in some ways, they are useful for describing
the purpose of a given pipe.

	A Source Pipe is a pipe that is used to extract data from some
external system and convert it into a Pemi data subject. This data
subject is the target of the source pipe.

	A Target Pipe is a pipe that is used to take a data subject and
convert it into a form that can be loaded into some external system.
This data subject is the source of the target pipe.

	A Transformation Pipe is a pipe that takes one or more data sources,
transforms them, and delivers one more target sources.

	A Job Pipe is a pipe that is self-contained and does not specify any
source or target data subjects. Instead, it is usually composed of other
pipes that are connected to each other.

Pipe Connections

A pipe can be composed of other pipes that are each connected to each
other. These connections for a directed acyclic graph (DAG). When
then connections between all pipes are executed, the pipes that form
the nodes of the DAG are executed in the order specified by the DAG
(in parallel, when possible – parallel execution is made possible
under the hood via Dask graphs [https://dask.pydata.org/en/latest/custom-graphs.html]). The data
objects referenced by the node pipes’ data subjects are passed between
the pipes according.

As a minimal example showing how connections work, let’s define
a dummy source pipe that just generates a Pandas dataframe with
some data in it:

class MySourcePipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.target(
 pemi.PdDataSubject,
 name='main'
)

 def flow(self):
 self.targets['main'].df = pd.DataFrame({
 'id': [1,2,3],
 'name': ['Buffy', 'Xander', 'Willow']
 })

And a target pipe that just prints the “salutation” field:

class MyTargetPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.source(
 pemi.PdDataSubject,
 name='main'
)

 def flow(self):
 for idx, row in self.sources['main'].df.iterrows():
 print(row['salutation'])

Now we define a job pipe that will connect the dummy source pipe to
our hello world pipe and connect that to our dummy target pipe:

class MyJob(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.pipe(
 name='my_source_pipe',
 pipe=MySourcePipe()
)
 self.connect('my_source_pipe', 'main').to('hello_pipe', 'input')

 self.pipe(
 name='hello_pipe',
 pipe=HelloNamePipe()
)
 self.connect('hello_pipe', 'output').to('my_target_pipe', 'main')

 self.pipe(
 name='my_target_pipe',
 pipe=MyTargetPipe()
)

 def flow(self):
 self.connections.flow()

In the flow method we call self.connections.flow(). This calls the
flow method of each pipe defined in the connections graph and
transfers data between them, in the order specified by the DAG.

The job pipe can be executed by calling its flow method:

MyJob().flow()
=> Hello Buffy
=> Hello Xander
=> Hello Willow

Furthermore, if you’re running this in a Jupyter notebook, you can see a graph of the
connections by running:

import pemi.dot
pemi.dot.graph(MyJob())

Referencing pipes in pipes

Referencing pipes within pipes works the same way as for data sources and targets.
For example, if we wanted to run the MyJob job pipe and then look at the
source of the “hello_pipe”:

job = MyJob()
job.flow()
job.pipes['hello_pipe'].sources['input'].df

Tests

Testing is an essential component of software development that is
often neglected in the data and ETL world. Pemi was designed to fill
that gap, and facilitate writing expressive data transformation tests.
Pemi tests run on top of the popular Python testing framework
Pytest [https://docs.pytest.org/en/latest].

The concepts involved in testing Pemi pipes include

	A Scenario describes the transformation that is being tested
(a Pemi pipe), and the data sources and targets that are the
subject of the test. Scenarios are composed of one more Cases.

	A Case is a set of Conditions and Expectations that describe
how the pipe is supposed to function.

	A Condition describes how the data for a particular case is
to be initialized – e.g., “when the field ‘name’ has the value ‘Xander’”.

	An Expectation describes the expected result, after the pipe has
been executed – e.g., “then the field ‘salutation’ has the value
‘Hello Xander’”.

To see these concepts play out in an example, let’s write a simple
test for our HelloNamePipe. In this README, we’ll talk through it
in stages, but the full example can be found in tests/test_readme.py [https://github.com/inside-track/pemi/blob/master/tests/test_readme.py].

To aid with grouping cases into distinct scenarios, scenarios are defined using
a context-manager pattern. So if we want to build a scenario called “Testing HelloNamePipe”,
we set that up like:

import pemi.testing as pt

with pt.Scenario(
 name='Testing HelloNamePipe',
 pipe=HelloNamePipe(),
 factories={
 'scooby': KeyFactory
 },
 sources={
 'input': lambda pipe: pipe.sources['input']
 },
 targets={
 'output': lambda pipe: pipe.targets['output']
 },
 target_case_collectors={
 'output': pt.CaseCollector(subject_field='id', factory='scooby', factory_field='scooby_id')
 }
) as scenario:
 #.... cases will go here

Let’s quickly review the parameters of Scenario (see
testing for more details):

	name - The name of the scenario.

	pipe - An instance of the pipe to be tested.

	factories - A dictionary containing key factories (more on this below).

	sources/targets - These are the sources/targets that will be
the subject of testing. Defined as a dictionary, the keys are a
short-hand for referencing the specific data subjects indicated in
the values.

	target_case_collectors - Every target needs to have a case collector. The
case collector links the field in a particular target to the field in the factory
in which it was generated.

With testing, we’re specifying how a data transformation is supposed
to behave under certain conditions. Typically, we’re focused on how
subtle variations in the values of fields in the sources affect the
values of fields in the targets. Each of these subtle variations
defines a Case that was mentioned above. Now, it would be
possible to have the tester execute the pipe for every case that
needed to be tested. However, this could result in exceedingly slow
tests, particularly when the overhead of loading data and executing a
process is high (like it is for in-database transformations, and even
more so for Apache Spark). Therefore, Pemi testing was built to only
execute the pipe once for each scenario, regardless of how many
cases are defined. This can only work if the records of the targets
can be associated with a particular case in which the conditions and
expectations are defined.

This brings us to Factories and Case Collectors. A Factory is a
way of generating data used for testing. Pemi uses Factory Boy [https://factoryboy.readthedocs.io/en/latest/#] to generate keys for
data records so that a record in a source table can be connected to a
target record. In the HelloNamePipe example, we can define a Factory Boy
key factory as:

class KeyFactory(factory.Factory):
 class Meta:
 model = dict
 id = factory.Sequence('scooby-{}'.format)

Every time a new instance of KeyFactory is created, the id column is given a new value:

>>> KeyFactory() #=> {'id': 'scooby-0'}
>>> KeyFactory() #=> {'id': 'scooby-1'}
>>> KeyFactory() #=> {'id': 'scooby-2'}

In the arguments of the Scenario class above, we see that a
factory with the name of scooby is defined to use the
KeyFactory class. Internally, the Scenario instance uses this
factory to generate records, and keeps track of the case in which
the factory instances were created. When the expectations of a case
are asserted, the testing suite collects all of the ids in a target
field and groups the target records into the specific cases. In the
example above, the target case collector named output specifies
that the target field id is generated from the id field via
the factory called scooby. Note that there is no need for the
field names to be the same. We’ll see more about how this works below.

Column-Oriented Tests

With the hard part out of the way, we can now define our first test
case. Cases are also defined using a context-manager pattern. To test
that the salutations are behaving correctly we could write:

with scenario.case('Populating salutation') as case:
 case.when(
 pt.when.source_conforms_to_schema(
 scenario.sources['input'],
 {'id': scenario.factories['scooby']['id']}
),
 pt.when.source_field_has_value(scenario.sources['input'], 'name', 'Dawn')
).then(
 pt.then.target_field_has_value(scenario.targets['output'], 'salutation', 'Hello Dawn')
)

The conditions set up the data to be tested:

	pt.when.source_conforms_to_schema - loads dummy data into the source
called ‘input’, and uses the schema to determine the valid values
that can be used. It also specifies that the id field on the source should
come from the id field of the scenario’s factory called scooby.

	pt.when.source_field_has_value - sets up the name field of the
source data to have the value Dawn.

The expectations are then:

	pt.then.target_field_has_value - the target field salutations on
the output has the value Hello Dawn. If we were to modify this
value to be Goodbye Dawn, don't let any vampires bite you neck, then
the test would fail.

This style of testing is referred to as “Column-Oriented” because we’re only focused
on the values of particular columns. We do not care about how the individual records
are ordered or related to one another.

Row-Oriented Tests

Column-oriented tests are not always sufficient to describe data
transformations. Sometimes we care about how rows are related. For
example, we might need to describe how to drop duplicate records, or
how to join two data sources together. To that end, we can write
“Row-Oriented” tests. While the example we are working with here
doesn’t have any row operations, we can still write a test case that
highlights how it can work.

with scenario.case('Dealing with many records') as case:
 ex_input = pemi.data.Table(
 '''
 | id | name |
 | - | - |
 | {sid[1]} | Spike |
 | {sid[2]} | Angel |
 '''.format(
 sid=scenario.factories['scooby']['id']
)
)

 ex_output = pemi.data.Table(
 '''
 | id | salutation |
 | - | - |
 | {sid[1]} | Hello Spike |
 | {sid[2]} | Hello Angel |
 '''.format(
 sid=scenario.factories['scooby']['id']
)
)

 case.when(
 pt.when.example_for_source(scenario.sources['input'], ex_input)
).then(
 pt.then.target_matches_example(scenario.targets['output'], ex_output)
)

In this case, we set up two data tables to show how the output records
are related to the input records. Using examples built with
pemi.data.Table, we can focus the test case on just those fields
that we care about. If we had a source that had 80 fields in it, we
would only need to define those that we care about for this particular
test. Pemi will use the schema defined for that source to fill in the
other fields with dummy data.

In this example, we use scenario.factories['scooby']['id'] to
generate ids for each record that will ensure that the ids created
when defining the source data can be tied to records that are output
in the target data. In ex_input, {sid[1]} will evaluate to
some value generated by the factory (e.g., scooby-9 or
scooby-12, etc.). However, when {sid[1]} is referenced in the
ex_output, it will use the same value that was generated for the
ex_input.

A complete version of this test can be found in tests/test_readme.py [https://github.com/inside-track/pemi/blob/master/tests/test_readme.py].

Running Tests

Pemi tests require that the pytest package be installed in your
project. Furthermore, you’ll need to tell pytest that you want to use
pemi tests by added the following to your conftest.py:

import pemi
pytest_plugins = ['pemi.pytest']

Tutorial

	TODO: Build an example repo that uses Pemi and has a full job

	TODO: Build a full integration job based off of the CSV job

	TODO: Guide for writing your own data subjects

	TODO: Guide for writing custom test conditions

	TODO: Row-focused tests vs column-focused tests

	TODO: Managing schemas as data flows through multiple pipes

Roadmap

	Future

	SQLAlchemy/Spark as plugins

	Streaming - I would like to be able to support streaming data subjects (like Kafka).

	Auto-documentation - The testing framework should be able to support building
documentation by collecting test scenario and case definitions. Documents could be built
to look something like Gherkin.

pipe

	
class pemi.pipe.Pipe(*, name='self', **params)

	A pipe is a parameterized collection of sources and targets which can be executed (flow).

	Parameters

	
	name (str) – Assign a name to the pipe

	**params – Additional keyword parameters

	
name

	The name of the pipe.

	Type

	str

	
sources

	A dictionary where the keys are the names of source data subjects and the values are instances of a data subject class.

	Type

	dict

	
targets

	A dictionary where the keys are the names of target data subjects and the values are instances of a data subject class.

	Type

	dict

	
pipes

	A dictionary referencing nested pipes where the keys are the names of the nested pipes and the values are the nested pipe instances.
All pipes come with at least one nested pipe called ‘self’.

	Type

	dict

	
connections

	Pemi connection object.

	Type

	PipeConnection

	
connect(from_pipe_name, from_subject_name)

	Connect one nested pipe to another

	Parameters

	
	from_pipe_name (str) – Name of the nested pipe that contains the source of the connection.

	from_subject_name (str) – Name of the data subject in the nested pipe that contains the source of the connection. This data subject needs to be a target
of the pipe referenced by from_pipe_name.

	Returns

	the PipeConnection object.

	Return type

	PipeConnection

Example

Connecting the target of one pipe to the source of another:

class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.pipe(
 name='get_awesome_data',
 pipe=GetAwesomeDataPipe()
)
 self.connect('get_awesome_data', 'main').to('load_awesome_data', 'main')

 self.pipe(
 name='load_awesome_data',
 pipe=LoadAwesomeDataPipe()
)

	
flow()

	Execute this pipe. This method is meant to be defined in a child class.

Example

A simple hello-world pipe:

class MyPipe(pemi.Pipe):
 def flow(self):
 print('hello world')

>>> MyPipe().flow()
'hello world'

	
from_pickle(picklepipe=None)

	Recursively load all data subjects in all nested pipes from a pickled bytes object
created by to_pickle.

	Parameters

	picklepipe – The bytes object created by to_pickle

	Returns

	

	Return type

	self

Example

De-pickling a pickled pipe:

my_pipe = MyPipe()
pickled = my_pipe.to_pickle()

my_other_pipe = MyPipe().from_pickle(pickled)

	
pipe(name, pipe)

	Defines a named pipe nested in this pipe.

	Parameters

	
	name (str) – Name of the nested pipe.

	pipe (pipe) – The nested pipe instance.

Example

Creating a target:

class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.pipe(
 name='nested',
 pipe=pemi.Pipe()
)

>>> MyPipe().pipes.keys()
['self', 'nested']

	
source(subject_class, name, schema=None, **kwargs)

	Define a source data subject for this pipe.

	Parameters

	
	subject_class (class) – The DataSubject class this source uses.

	name (str) – Name of this data subject.

	schema (schema) – Schema associated with this source.

Example

Creating a source:

class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.source(
 pemi.PdDataSubject,
 name='main'
)

>>> MyPipe().sources.keys()
['main']

	
target(subject_class, name, schema=None, **kwargs)

	Define a target data subject for this pipe.

	Parameters

	
	subject_class (class) – The DataSubject class this target uses.

	name (str) – Name of this data subject.

	schema (schema) – Schema associated with this target.

Example

Creating a target:

class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.target(
 pemi.PdDataSubject,
 name='main'
)

>>> MyPipe().targets.keys()
['main']

	
to_pickle(picklepipe=None)

	Recursively pickle all of the data subjects in this and all nested pipes

	Parameters

	picklepipe – A pickled representation of a pipe. Only used for recursion not meant to be set by user.

	Returns

	A bytes object containing the pickled pipe.

	Return type

	bytes

Example

Pickling a pipe:

>>> MyPipe.to_pickle()
b'.. <bytes> ..'

data_subject

	
class pemi.data_subject.DataSubject(schema=None, name=None, pipe=None)

	A data subject is mostly just a schema and a generic data object
Actually, it’s mostly just a schema that knows which pipe it belongs to (if any)
and can be converted from and to a pandas dataframe (really only needed for testing to work)

schema

	
class pemi.schema.Schema(*args, **kwargs)

	A schema is a thing.

	
metapply(elem, func)

	Allows one to create/modify metadata elements using a function

	Parameters

	
	elem (str) – Name of the metadata element to create or modify

	func (func) – Function that accepts a single pemi.Field argument and returns
the value of the metadata element indicated by elem

	Returns

	A new pemi.Schema with the updated metadata

	Return type

	pemi.Schema

Example

Suppose we wanted to add some metadata to a schema that will be used to
construct a SQL statement:

pemi.schema.Schema(
 id=StringField(),
 name=StringField()
).metapply(
 'sql',
 lambda field: 'students.{} AS student_{}'.format(field.name, field.name)
)

	
select(func)

	Returns a new schema with the fields selected via a function (func) of the field

Fields

	
class pemi.fields.Field(name=None, **metadata)

	A field is a thing that is inherited

	
class pemi.fields.StringField(name=None, **metadata)

	

	
class pemi.fields.IntegerField(name=None, **metadata)

	

	
class pemi.fields.FloatField(name=None, **metadata)

	

	
class pemi.fields.DateField(name=None, **metadata)

	

	
class pemi.fields.DateTimeField(name=None, **metadata)

	

	
class pemi.fields.BooleanField(name=None, **metadata)

	

	
class pemi.fields.DecimalField(name=None, **metadata)

	

	
class pemi.fields.JsonField(name=None, **metadata)

	

testing

Testing is described with examples in Tests.

	
class pemi.testing.Scenario(name, pipe, factories, sources, targets, target_case_collectors, flow='flow', selector=None, usefixtures=None)

	A Scenario describes the transformation that is being tested
(a Pemi pipe), and the data sources and targets that are the
subject of the test. Scenarios are composed of one more Cases.

	Parameters

	
	name (str) – The name of a scenario. Multiple scenarios may be present in a file,
but the names of each scenario must be unique.

	pipe (pemi.Pipe) – The Pemi pipe that is the main subject of the test. Test
data will be provided to the sources of the pipe (defined below), and the pipe
will be executed. Note that the pipe is only executed once per scenario.

	flow (str) – The name of the method used to execute the pipe (default: flow).

	factories (dict) – A dictionary where the keys are the names of factories and
the values are FactoryBoy factories that will be used to generate unique keys.

	sources (dict) – A dictionary where the keys are the names of sources that will
be the subjects of testing. The values are methods that accept the pipe
referenced in the pipe argument above and return the data subject that
will be used as a source.

	targets (dict) – A dictionary where the keys are the names of targets that will
be the subjects of testing. The values are methods that accept the pipe
referenced in the pipe argument above and return the data subject that
will be used as a target.

	target_case_collectors (dict) – A dictionary where the keys are the names of the
targets that will be the subjects of testing. The values are CaseCollector
objects that tie a field in the scenario’s target to the field in a given factory.
Every named target needs to have a case collector.

	selector (str) – A string representing a regular expression. Any case names that
do not match this regex will be excluded from testing.

	usefixtures (str) – Name of a Pytest fixture to use for the scenario. Often used
for database setup/teardown options.

	
class pemi.testing.Case(name, scenario)

	A Case is a set of Conditions and Expectations that describe
how the pipe is supposed to function.

	Parameters

	
	name (str) – The name of the case. The names of cases within a scenario must be unique.

	scenario (pemi.testing.Scenario) – The scenario object that this case is associated with.

	
expect_exception(exception)

	Used to indicate that the test case is expected to fail with exception exception.
If the test case raises this exception, then it will pass. If it does not raise the
exception, then it will fail.

	
then(*funcs)

	Accepts a list of functions that are used to test the result data for a specific case.
Each of the functions should accept one argument, which is the case object.
See pemi.testing.then for examples.

	
when(*funcs)

	Accepts a list of functions that are used to set up the data for a specific case.
Each of the functions should accept one argument, which is the case object.
See pemi.testing.when for examples.

	
class pemi.testing.when

	Contains methods used to set up conditions for a testing case.

	
static example_for_source(source, table)

	Set specific rows and columns to specific values.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	table (pemi.data.Table) – Pemi data table to use for specifying data.

Example

Given a Pemi data table, specify rows and columns for the source main:

case.when(
 when.example_for_source(
 scenario.sources['main'],
 pemi.data.Table(
 '''
 | id | name |
 | - | - |
 | {sid[1]} | Spike |
 | {sid[2]} | Angel |
 '''.format(
 sid=scenario.factories['vampires']['id']
)
)
)
)

	
static source_conforms_to_schema(source, key_factories=None)

	Creates 3 records and fills out data for a data source subject
that conforms to the data types specified by the data
subject’s schema.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	key_factories (dict) – A dictionary where the keys are the names of fields

	the values are the field value generator originating from a scenario (and) –

	factory (key) –

Example

For the source subject ‘main’, this will generate faked data that conforms
to the schema defined for main. It will also populate the id field
with values generated from the id field in the vampires factory:

case.when(
 when.source_conforms_to_schema(
 scenario.sources['main'],
 {'id': scenario.factories['vampires']['id']}
)
)

	
static source_field_has_value(source, field, value)

	Sets the value of a specific field to a specific value.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	field (str) – Name of field.

	value (str, iter) – Value to set for the field.

Examples

Set the value of the field name to the string value Buffy in
the scenario source main:

case.when(
 when.source_field_has_value(scenario.sources['main'], 'name', 'Buffy')
)

	
static source_fields_have_values(source, mapping)

	Sets the value of a multiples fields to a specific values.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	mapping (dict) – Dictionary where the keys are the names of fields and the values
are the values those fields are to be set to.

Examples

Set the value of the field name to the string value Buffy and
the value of the field vampires_slain to 133 in
the scenario source main:

case.when(
 when.source_fields_have_values(
 scenario.sources['main'],
 {
 'name': 'Buffy',
 'vampires_slain': 133
 }
)
)

	
class pemi.testing.then

	Contains methods used to test that actual outcome is equal to expected outcome.

	
static field_is_copied(source, source_field, target, target_field, by=None, source_by=None, target_by=None)

	Asserts that a field value is copied from the source to the target.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	source_field (str) – The name of the source field.

	target (scenario.targets[]) – The scenario target data subject.

	target_field (str) – The name of the target field.

	by (list) – A list of field names to sort the data by before
performing the comparison.

	source_by (list) – A list of field names to sort the source data by before
performing the comparison (uses by if not given).

	target_by (list) – A list of field names to sort the target data by before
performing the comparison (uses by if not given).

Examples

Asserts that the value of the source field name is copied to the
target field slayer_name:

case.then(
 then.field_is_copied(
 scenario.sources['main'], 'name',
 scenario.targets['main'], 'slayer_name',
 by=['id']
)
)

	
static fields_are_copied(source, target, mapping, by=None, source_by=None, target_by=None)

	Asserts that various field values are copied from the source to the target.

	Parameters

	
	source (scenario.sources[]) – The scenario source data subject.

	target (scenario.targets[]) – The scenario target data subject.

	mapping (list) – A list of tuples. Each tuple contains the source field name
and target field name, in that order.

	by (list) – A list of field names to sort the data by before
performing the comparison.

	source_by (list) – A list of field names to sort the source data by before
performing the comparison (uses by if not given).

	target_by (list) – A list of field names to sort the target data by before
performing the comparison (uses by if not given).

Examples

Asserts that the value of the source field name is copied to the
target field slayer_name and num is copied to vampires_slain:

case.then(
 then.fields_are_copied(
 scenario.sources['main'],
 scenario.targets['main'],
 [
 ('name', 'slayer_name'),
 ('num', 'vampires_slain')
],
 by=['id']
)
)

	
static target_does_not_have_fields(target, fields)

	Asserts that the target does not have certain fields.

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	fields (list) – List of field names that should not be on the target.

Examples

Asserts that the scenario target main does not have the fields
sparkle_factor or is_werewolf:

case.then(
 then.target_does_not_have_fields(
 scenario.targets['main'],
 ['sparkle_factor', 'is_werewolf']
)
)

	
static target_field_has_value(target, field, value)

	Asserts that a specific field has a specific value.

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	field (str) – Name of field.

	value (str) – Value of the field that is expected.

Examples

Asserts that the value of the field name is set to the string value Buffy in
the scenario target main:

case.then(
 then.target_field_has_value(scenario.targets['main'], 'name', 'Buffy')
)

	
static target_fields_have_values(target, mapping)

	Asserts that multiple fields have specific values.

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	mapping (dict) – Dictionary where the keys are the names of fields and the values
are the expected values those fields.

Examples

Asserts that the value of the field name is the string value Buffy and
the value of the field vampires_slain is 133 in
the scenario target main:

case.then(
 then.target_fields_have_values(
 scenario.targets['main'],
 {
 'name': 'Buffy',
 'vampires_slain': 133
 }
)
)

	
static target_has_fields(target, fields, only=False)

	Asserts that the target has certain fields.

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	fields (list) – List of field names that should not be on the target.

	only (bool) – Specifies whether the target should only have the fields listed. Raises
an exception if there are additional fields.

Examples

Asserts that the scenario target main only has the fields
name and vampires_slain:

case.then(
 then.target_has_fields(
 scenario.targets['main'],
 ['name', 'vampires_slain'],
 only=True
)
)

	
static target_has_n_records(target, expected_n)

	Asserts that the target has a specific number of records.

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	expected_n (int) – The number of records expected.

Examples

Asserts that the scenario target main has 3 records:

case.then(then.target_has_n_records(scenario.targets['main'], 3)

	
static target_is_empty(target)

	Asserts that the target has no records.

	Parameters

	target (scenario.targets[]) – The scenario target data subject.

Examples

Asserts that the scenario target errors does not have any records:

case.then(then.target_is_empty(scenario.targets['errors'])

	
static target_matches_example(target, expected_table, by=None, query=None)

	Asserts that a given target matches an example data table

	Parameters

	
	target (scenario.targets[]) – The scenario target data subject.

	expected_table (pemi.data.Table) – Expected result data. If the table
has fewer columns than the pipe generates, those extra columns are
not considered in the comparison.

	by (list) – A list of field names to sort the result data by before
performing the comparison.

	query (string) – A pandas query string that can be used to filter down target
records prior to comparison

Examples

Asserts that the scenario target main conforms to the expected data:

case.then(
 then.target_matches_example(
 scenario.targets['main'],
 pemi.data.Table(
 '''
 | id | name |
 | - | - |
 | {sid[1]} | Spike |
 | {sid[2]} | Angel |
 '''.format(
 sid=scenario.factories['vampires']['id']
)
),
 by=['id'] #esp important if the ids are generated randomly
)
)

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pemi	

 	
 	
 pemi.schema	

 	
 	
 pemi.testing	

Index

 B
 | C
 | D
 | E
 | F
 | I
 | J
 | M
 | N
 | P
 | S
 | T
 | W

B

 	
 	BooleanField (class in pemi.fields)

C

 	
 	Case (class in pemi.testing)

 	
 	connect() (pemi.pipe.Pipe method)

 	connections (pemi.pipe.Pipe attribute)

D

 	
 	DataSubject (class in pemi.data_subject)

 	DateField (class in pemi.fields)

 	
 	DateTimeField (class in pemi.fields)

 	DecimalField (class in pemi.fields)

E

 	
 	example_for_source() (pemi.testing.when static method)

 	
 	expect_exception() (pemi.testing.Case method)

F

 	
 	Field (class in pemi.fields)

 	field_is_copied() (pemi.testing.then static method)

 	fields_are_copied() (pemi.testing.then static method)

 	
 	FloatField (class in pemi.fields)

 	flow() (pemi.pipe.Pipe method)

 	from_pickle() (pemi.pipe.Pipe method)

I

 	
 	IntegerField (class in pemi.fields)

J

 	
 	JsonField (class in pemi.fields)

M

 	
 	metapply() (pemi.schema.Schema method)

N

 	
 	name (pemi.pipe.Pipe attribute)

P

 	
 	pemi.schema (module)

 	pemi.testing (module)

 	
 	Pipe (class in pemi.pipe)

 	pipe() (pemi.pipe.Pipe method)

 	pipes (pemi.pipe.Pipe attribute)

S

 	
 	Scenario (class in pemi.testing)

 	Schema (class in pemi.schema)

 	select() (pemi.schema.Schema method)

 	source() (pemi.pipe.Pipe method)

 	
 	source_conforms_to_schema() (pemi.testing.when static method)

 	source_field_has_value() (pemi.testing.when static method)

 	source_fields_have_values() (pemi.testing.when static method)

 	sources (pemi.pipe.Pipe attribute)

 	StringField (class in pemi.fields)

T

 	
 	target() (pemi.pipe.Pipe method)

 	target_does_not_have_fields() (pemi.testing.then static method)

 	target_field_has_value() (pemi.testing.then static method)

 	target_fields_have_values() (pemi.testing.then static method)

 	target_has_fields() (pemi.testing.then static method)

 	target_has_n_records() (pemi.testing.then static method)

 	
 	target_is_empty() (pemi.testing.then static method)

 	target_matches_example() (pemi.testing.then static method)

 	targets (pemi.pipe.Pipe attribute)

 	then (class in pemi.testing)

 	then() (pemi.testing.Case method)

 	to_pickle() (pemi.pipe.Pipe method)

W

 	
 	when (class in pemi.testing)

 	
 	when() (pemi.testing.Case method)

Welcome to Pemi’s documentation!

Pemi is a framework for building testable ETL processes and workflows. Users
define pipes that define how to collect, transform, and deliver data. Pipes
can be combined with other pipes to build out complex and modular data pipelines.
Testing is a first-class feature of Pemi and comes with a testing API to allow for
describing test coverage in a manner that is natural for data transformations.

Full documentation on readthedocs [http://pemi.readthedocs.io/en/latest/index.html]

Install Pemi

Pemi can be installed from pip:

pip install pemi

Concepts and Features

Pipes

The principal abstraction in Pemi is the Pipe. A pipe can be composed
of Data Sources, Data Targets, and other Pipes. When
a pipe is executed, it collects data form the data sources, manipulates that data,
and loads the results into the data targets. For example, here’s a simple
“Hello World” pipe. It takes a list of names in the form of a Pandas DataFrame
and returns a Pandas DataFrame saying hello to each of them.

import pandas as pd

import pemi
from pemi.fields import *

class HelloNamePipe(pemi.Pipe):
 # Override the constructor to configure the pipe
 def __init__(self):
 # Make sure to call the parent constructor
 super().__init__()

 # Add a data source to our pipe - a pandas dataframe called 'input'
 self.source(
 pemi.PdDataSubject,
 name='input',
 schema = pemi.Schema(
 name=StringField()
)

)

 # Add a data target to our pipe - a pandas dataframe called 'output'
 self.target(
 pemi.PdDataSubject,
 name='output'
)

 # All pipes must define a 'flow' method that is called to execute the pipe
 def flow(self):
 self.targets['output'].df = self.sources['input'].df.copy()
 self.targets['output'].df['salutation'] = self.sources['input'].df['name'].apply(
 lambda v: 'Hello ' + v
)

To use the pipe, we have to create an instance of it:

pipe = HelloNamePipe()

and give some data to the source named “input”:

pipe.sources['input'].df = pd.DataFrame({
 'name': ['Buffy', 'Xander', 'Willow', 'Dawn']
})

	name

	Buffy

	Xander

	Willow

	Dawn

The pipe performs the data transformation when the flow method is called:

pipe.flow()

The data target named “output” is then populated:

pipe.targets['output'].df

	name

	salutation

	Buffy

	Hello Buffy

	Xander

	Hello Xander

	Willow

	Hello Willow

	Dawn

	Hello Dawn

Data Subjects

Data Sources and Data Targets are both types of Data
Subjects. A data subject is mostly just a reference to an object
that can be used to manipulate data. In the [Pipes](#pipes) example
above, we defined the data source called “input” as using the
pemi.PdDataSubject class. This means that this data subject refers
to a Pandas DataFrame object. Calling the df method on this data subject
simply returns the Pandas DataFrame, which can be manipulated in all the ways
that Pandas DataFrames can be manipulated.

Pemi supports 3 data subjects natively, but can easily be extended to support others. The
3 supported data subjects are

	pemi.PdDataSubject - Pandas DataFrames

	pemi.SaDataSubject - SQLAlchemy Engines

	pemi.SparkDataSubject - Apache Spark DataFrames

Schemas

A data subject can optionally be associated with a Schema.
Schemas can be used to validate that the data object of the data
subject conforms to the schema. This is useful when data is passed
from the target of one pipe to the source of another because it
ensures that downstream pipes get the data they are expecting.

For example, suppose we wanted to ensure that our data had fields called id and name.
We would define a data subject like:

from pemi.fields import *

ds = pemi.PdDataSubject(
 schema=pemi.Schema(
 id=IntegerField(),
 name=StringField()
)
)

If we provide the data subject with a dataframe that does not have a field:

df = pd.DataFrame({
 'name': ['Buffy', 'Xander', 'Willow']
})

ds.df = df

Then an error will be raised when the schema is validated (which happens automatically when
data is passed between pipes, as we’ll see below):

ds.validate_schema()
#=> MissingFieldsError: DataFrame missing expected fields: {'id'}

We’ll also see later that defining a data subject with a schema also
aids with writing tests. So while optional, defining data subjects
with an associated schema is highly recommended.

Referencing data subjects in pipes

Data subjects are rarely defined outside the scope of a pipe as done
in [Schemas](#schemas). Instead, they are usually defined in the
constructor of a pipe as in [Pipes](#pipes). Two methods of the
pemi.Pipe class are used to define data subjects: source and
target. These methods allow one to specify the data subject class
that the data subject will use, give it a name, assign a schema, and
pass on any other arguments to the specific data subject class.

For example, if we were to define a pipe that was meant to use an
Apache Spark dataframe as a source:

spark_session = ...
class MyPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.source(
 pemi.SparkDataSubject,
 name='my_spark_source',
 schema=pemi.Schema(
 id=IntegerField(),
 name=StringField()
),
 spark=spark_session
)

When self.source is called, it builds the data subject from the options provided
and puts it in a dictionary that is associated with the pipe. The spark data frame
can then be accessed from within the flow method as:

def flow(self):
 self.sources['my_spark_source'].df

Types of Pipes

Most user pipes will typically inherit from the main pemi.Pipe class. However,
the topology of the pipe can classify it according to how it might be used. While
the following definitions can be bent in some ways, they are useful for describing
the purpose of a given pipe.

	A Source Pipe is a pipe that is used to extract data from some
external system and convert it into a Pemi data subject. This data
subject is the target of the source pipe.

	A Target Pipe is a pipe that is used to take a data subject and
convert it into a form that can be loaded into some external system.
This data subject is the source of the target pipe.

	A Transformation Pipe is a pipe that takes one or more data sources,
transforms them, and delivers one more target sources.

	A Job Pipe is a pipe that is self-contained and does not specify any
source or target data subjects. Instead, it is usually composed of other
pipes that are connected to each other.

Pipe Connections

A pipe can be composed of other pipes that are each connected to each
other. These connections for a directed acyclic graph (DAG). When
then connections between all pipes are executed, the pipes that form
the nodes of the DAG are executed in the order specified by the DAG
(in parallel, when possible – parallel execution is made possible
under the hood via Dask graphs [https://dask.pydata.org/en/latest/custom-graphs.html]). The data
objects referenced by the node pipes’ data subjects are passed between
the pipes according.

As a minimal example showing how connections work, let’s define
a dummy source pipe that just generates a Pandas dataframe with
some data in it:

class MySourcePipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.target(
 pemi.PdDataSubject,
 name='main'
)

 def flow(self):
 self.targets['main'].df = pd.DataFrame({
 'id': [1,2,3],
 'name': ['Buffy', 'Xander', 'Willow']
 })

And a target pipe that just prints the “salutation” field:

class MyTargetPipe(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.source(
 pemi.PdDataSubject,
 name='main'
)

 def flow(self):
 for idx, row in self.sources['main'].df.iterrows():
 print(row['salutation'])

Now we define a job pipe that will connect the dummy source pipe to
our hello world pipe and connect that to our dummy target pipe:

class MyJob(pemi.Pipe):
 def __init__(self):
 super().__init__()

 self.pipe(
 name='my_source_pipe',
 pipe=MySourcePipe()
)
 self.connect('my_source_pipe', 'main').to('hello_pipe', 'input')

 self.pipe(
 name='hello_pipe',
 pipe=HelloNamePipe()
)
 self.connect('hello_pipe', 'output').to('my_target_pipe', 'main')

 self.pipe(
 name='my_target_pipe',
 pipe=MyTargetPipe()
)

 def flow(self):
 self.connections.flow()

In the flow method we call self.connections.flow(). This calls the
flow method of each pipe defined in the connections graph and
transfers data between them, in the order specified by the DAG.

The job pipe can be executed by calling its flow method:

MyJob().flow()
=> Hello Buffy
=> Hello Xander
=> Hello Willow

Furthermore, if you’re running this in a Jupyter notebook, you can see a graph of the
connections by running:

import pemi.dot
pemi.dot.graph(MyJob())

Referencing pipes in pipes

Referencing pipes within pipes works the same way as for data sources and targets.
For example, if we wanted to run the MyJob job pipe and then look at the
source of the “hello_pipe”:

job = MyJob()
job.flow()
job.pipes['hello_pipe'].sources['input'].df

Where to go from here

Full documentation on readthedocs [http://pemi.readthedocs.io/en/latest/index.html]

Contributing

If you want to contribute to the development of Pemi, you’ll need to be able to run the test
suite locally. To get started, copy the example environment file to a file you can
edit locally if needed:

>>> cp example.env .env

All of the tests are run inside of a docker container, which you can build using

>>> inv build

Once the containers are built, spin up the containers to run the tests

>>> inv up

And then run the tests using something like (you may prefer different pytest options):

>>> inv test --pytest="-s -x -vv --tb=short --color=yes tests"

The test container also launches a local Jupyter notebook server. This can be a convenient tool to
have when developing Pemi. To access the notebook severs, just visit http://localhost:8890/lab
in a web browser (the specific port can be configured in the .env file).

Take down the container using

>>> inv down

 nav.xhtml

 Table of Contents

 		
 Welcome to Pemi’s documentation!

_static/minus.png

_static/plus.png

_static/file.png

